58 lines
2.1 KiB
Python
58 lines
2.1 KiB
Python
|
|
import torch
|
||
|
|
import torch.nn.functional as F
|
||
|
|
from typing import Tuple
|
||
|
|
|
||
|
|
|
||
|
|
def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
|
||
|
|
loss = 0
|
||
|
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||
|
|
m_DG = torch.median((dr - dg))
|
||
|
|
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
|
||
|
|
loss += tau - F.relu(tau - L_rel)
|
||
|
|
return loss
|
||
|
|
|
||
|
|
|
||
|
|
def mel_loss(real_speech, generated_speech, mel_transforms):
|
||
|
|
loss = 0
|
||
|
|
for transform in mel_transforms:
|
||
|
|
mel_r = transform(real_speech)
|
||
|
|
mel_g = transform(generated_speech)
|
||
|
|
loss += F.l1_loss(mel_g, mel_r)
|
||
|
|
return loss
|
||
|
|
|
||
|
|
|
||
|
|
class DPOLoss(torch.nn.Module):
|
||
|
|
"""
|
||
|
|
DPO Loss
|
||
|
|
"""
|
||
|
|
|
||
|
|
def __init__(self, beta: float, label_smoothing: float = 0.0, ipo: bool = False) -> None:
|
||
|
|
super().__init__()
|
||
|
|
self.beta = beta
|
||
|
|
self.label_smoothing = label_smoothing
|
||
|
|
self.ipo = ipo
|
||
|
|
|
||
|
|
def forward(
|
||
|
|
self,
|
||
|
|
policy_chosen_logps: torch.Tensor,
|
||
|
|
policy_rejected_logps: torch.Tensor,
|
||
|
|
reference_chosen_logps: torch.Tensor,
|
||
|
|
reference_rejected_logps: torch.Tensor,
|
||
|
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||
|
|
pi_logratios = policy_chosen_logps - policy_rejected_logps
|
||
|
|
ref_logratios = reference_chosen_logps - reference_rejected_logps
|
||
|
|
logits = pi_logratios - ref_logratios
|
||
|
|
if self.ipo:
|
||
|
|
losses = (logits - 1 / (2 * self.beta)) ** 2 # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf
|
||
|
|
else:
|
||
|
|
# Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https://arxiv.org/pdf/2305.18290.pdf)
|
||
|
|
losses = (
|
||
|
|
-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
|
||
|
|
- F.logsigmoid(-self.beta * logits) * self.label_smoothing
|
||
|
|
)
|
||
|
|
loss = losses.mean()
|
||
|
|
chosen_rewards = self.beta * (policy_chosen_logps - reference_chosen_logps).detach()
|
||
|
|
rejected_rewards = self.beta * (policy_rejected_logps - reference_rejected_logps).detach()
|
||
|
|
|
||
|
|
return loss, chosen_rewards, rejected_rewards
|