187 lines
6.6 KiB
Python
187 lines
6.6 KiB
Python
|
|
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
||
|
|
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||
|
|
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
|
||
|
|
#
|
||
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
|
# you may not use this file except in compliance with the License.
|
||
|
|
# You may obtain a copy of the License at
|
||
|
|
#
|
||
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
#
|
||
|
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
|
# See the License for the specific language governing permissions and
|
||
|
|
# limitations under the License.
|
||
|
|
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||
|
|
"""Unility functions for Transformer."""
|
||
|
|
|
||
|
|
import queue
|
||
|
|
import random
|
||
|
|
from typing import List
|
||
|
|
|
||
|
|
import numpy as np
|
||
|
|
import torch
|
||
|
|
|
||
|
|
IGNORE_ID = -1
|
||
|
|
|
||
|
|
|
||
|
|
def pad_list(xs: List[torch.Tensor], pad_value: int):
|
||
|
|
"""Perform padding for the list of tensors.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
|
||
|
|
pad_value (float): Value for padding.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
Tensor: Padded tensor (B, Tmax, `*`).
|
||
|
|
|
||
|
|
Examples:
|
||
|
|
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
|
||
|
|
>>> x
|
||
|
|
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
|
||
|
|
>>> pad_list(x, 0)
|
||
|
|
tensor([[1., 1., 1., 1.],
|
||
|
|
[1., 1., 0., 0.],
|
||
|
|
[1., 0., 0., 0.]])
|
||
|
|
|
||
|
|
"""
|
||
|
|
max_len = max([len(item) for item in xs])
|
||
|
|
batchs = len(xs)
|
||
|
|
ndim = xs[0].ndim
|
||
|
|
if ndim == 1:
|
||
|
|
pad_res = torch.zeros(batchs,
|
||
|
|
max_len,
|
||
|
|
dtype=xs[0].dtype,
|
||
|
|
device=xs[0].device)
|
||
|
|
elif ndim == 2:
|
||
|
|
pad_res = torch.zeros(batchs,
|
||
|
|
max_len,
|
||
|
|
xs[0].shape[1],
|
||
|
|
dtype=xs[0].dtype,
|
||
|
|
device=xs[0].device)
|
||
|
|
elif ndim == 3:
|
||
|
|
pad_res = torch.zeros(batchs,
|
||
|
|
max_len,
|
||
|
|
xs[0].shape[1],
|
||
|
|
xs[0].shape[2],
|
||
|
|
dtype=xs[0].dtype,
|
||
|
|
device=xs[0].device)
|
||
|
|
else:
|
||
|
|
raise ValueError(f"Unsupported ndim: {ndim}")
|
||
|
|
pad_res.fill_(pad_value)
|
||
|
|
for i in range(batchs):
|
||
|
|
pad_res[i, :len(xs[i])] = xs[i]
|
||
|
|
return pad_res
|
||
|
|
|
||
|
|
|
||
|
|
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
|
||
|
|
ignore_label: int) -> torch.Tensor:
|
||
|
|
"""Calculate accuracy.
|
||
|
|
|
||
|
|
Args:
|
||
|
|
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
|
||
|
|
pad_targets (LongTensor): Target label tensors (B, Lmax).
|
||
|
|
ignore_label (int): Ignore label id.
|
||
|
|
|
||
|
|
Returns:
|
||
|
|
torch.Tensor: Accuracy value (0.0 - 1.0).
|
||
|
|
|
||
|
|
"""
|
||
|
|
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
|
||
|
|
pad_outputs.size(1)).argmax(2)
|
||
|
|
mask = pad_targets != ignore_label
|
||
|
|
numerator = torch.sum(
|
||
|
|
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
|
||
|
|
denominator = torch.sum(mask)
|
||
|
|
return (numerator / denominator).detach()
|
||
|
|
|
||
|
|
|
||
|
|
def get_padding(kernel_size, dilation=1):
|
||
|
|
return int((kernel_size * dilation - dilation) / 2)
|
||
|
|
|
||
|
|
|
||
|
|
def init_weights(m, mean=0.0, std=0.01):
|
||
|
|
classname = m.__class__.__name__
|
||
|
|
if classname.find("Conv") != -1:
|
||
|
|
m.weight.data.normal_(mean, std)
|
||
|
|
|
||
|
|
|
||
|
|
# Repetition Aware Sampling in VALL-E 2
|
||
|
|
def ras_sampling(weighted_scores, decoded_tokens, sampling, top_p=0.8, top_k=25, win_size=10, tau_r=0.1):
|
||
|
|
top_ids = nucleus_sampling(weighted_scores, top_p=top_p, top_k=top_k)
|
||
|
|
rep_num = (torch.tensor(decoded_tokens[-win_size:]).to(weighted_scores.device) == top_ids).sum().item()
|
||
|
|
if rep_num >= win_size * tau_r:
|
||
|
|
top_ids = random_sampling(weighted_scores, decoded_tokens, sampling)
|
||
|
|
return top_ids
|
||
|
|
|
||
|
|
|
||
|
|
def nucleus_sampling(weighted_scores, top_p=0.8, top_k=25):
|
||
|
|
prob, indices = [], []
|
||
|
|
cum_prob = 0.0
|
||
|
|
sorted_value, sorted_idx = weighted_scores.softmax(dim=0).sort(descending=True, stable=True)
|
||
|
|
for i in range(len(sorted_idx)):
|
||
|
|
# sampling both top-p and numbers.
|
||
|
|
if cum_prob < top_p and len(prob) < top_k:
|
||
|
|
cum_prob += sorted_value[i]
|
||
|
|
prob.append(sorted_value[i])
|
||
|
|
indices.append(sorted_idx[i])
|
||
|
|
else:
|
||
|
|
break
|
||
|
|
prob = torch.tensor(prob).to(weighted_scores)
|
||
|
|
indices = torch.tensor(indices, dtype=torch.long).to(weighted_scores.device)
|
||
|
|
top_ids = indices[prob.multinomial(1, replacement=True)]
|
||
|
|
return top_ids
|
||
|
|
|
||
|
|
|
||
|
|
def random_sampling(weighted_scores, decoded_tokens, sampling):
|
||
|
|
top_ids = weighted_scores.softmax(dim=0).multinomial(1, replacement=True)
|
||
|
|
return top_ids
|
||
|
|
|
||
|
|
|
||
|
|
def fade_in_out(fade_in_mel, fade_out_mel, window):
|
||
|
|
device = fade_in_mel.device
|
||
|
|
fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
|
||
|
|
mel_overlap_len = int(window.shape[0] / 2)
|
||
|
|
if fade_in_mel.device == torch.device('cpu'):
|
||
|
|
fade_in_mel = fade_in_mel.clone()
|
||
|
|
fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
|
||
|
|
fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
|
||
|
|
return fade_in_mel.to(device)
|
||
|
|
|
||
|
|
|
||
|
|
def set_all_random_seed(seed):
|
||
|
|
random.seed(seed)
|
||
|
|
np.random.seed(seed)
|
||
|
|
torch.manual_seed(seed)
|
||
|
|
torch.cuda.manual_seed_all(seed)
|
||
|
|
|
||
|
|
|
||
|
|
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
||
|
|
assert mask.dtype == torch.bool
|
||
|
|
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
|
||
|
|
mask = mask.to(dtype)
|
||
|
|
# attention mask bias
|
||
|
|
# NOTE(Mddct): torch.finfo jit issues
|
||
|
|
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
|
||
|
|
mask = (1.0 - mask) * -1.0e+10
|
||
|
|
return mask
|
||
|
|
|
||
|
|
|
||
|
|
class TrtContextWrapper:
|
||
|
|
def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
|
||
|
|
self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
|
||
|
|
self.trt_engine = trt_engine
|
||
|
|
for _ in range(trt_concurrent):
|
||
|
|
trt_context = trt_engine.create_execution_context()
|
||
|
|
trt_stream = torch.cuda.stream(torch.cuda.Stream(device))
|
||
|
|
assert trt_context is not None, 'failed to create trt context, maybe not enough CUDA memory, try reduce current trt concurrent {}'.format(trt_concurrent)
|
||
|
|
self.trt_context_pool.put([trt_context, trt_stream])
|
||
|
|
assert self.trt_context_pool.empty() is False, 'no avaialbe estimator context'
|
||
|
|
|
||
|
|
def acquire_estimator(self):
|
||
|
|
return self.trt_context_pool.get(), self.trt_engine
|
||
|
|
|
||
|
|
def release_estimator(self, context, stream):
|
||
|
|
self.trt_context_pool.put([context, stream])
|