当前Convention未适配3.10([T]泛型注解导致的问题)
This commit is contained in:
120
cosyvoice/bin/export_onnx.py
Normal file
120
cosyvoice/bin/export_onnx.py
Normal file
@@ -0,0 +1,120 @@
|
||||
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com)
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import argparse
|
||||
import logging
|
||||
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||
import os
|
||||
import sys
|
||||
import onnxruntime
|
||||
import random
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append('{}/../..'.format(ROOT_DIR))
|
||||
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice, CosyVoice2
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
|
||||
|
||||
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
||||
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
||||
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
|
||||
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
||||
t = torch.rand((batch_size), dtype=torch.float32, device=device)
|
||||
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
|
||||
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
||||
return x, mask, mu, t, spks, cond
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description='export your model for deployment')
|
||||
parser.add_argument('--model_dir',
|
||||
type=str,
|
||||
default='pretrained_models/CosyVoice-300M',
|
||||
help='local path')
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
return args
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def main():
|
||||
args = get_args()
|
||||
logging.basicConfig(level=logging.DEBUG,
|
||||
format='%(asctime)s %(levelname)s %(message)s')
|
||||
|
||||
try:
|
||||
model = CosyVoice(args.model_dir)
|
||||
except Exception:
|
||||
try:
|
||||
model = CosyVoice2(args.model_dir)
|
||||
except Exception:
|
||||
raise TypeError('no valid model_type!')
|
||||
|
||||
# 1. export flow decoder estimator
|
||||
estimator = model.model.flow.decoder.estimator
|
||||
estimator.eval()
|
||||
|
||||
device = model.model.device
|
||||
batch_size, seq_len = 2, 256
|
||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||
torch.onnx.export(
|
||||
estimator,
|
||||
(x, mask, mu, t, spks, cond),
|
||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
export_params=True,
|
||||
opset_version=18,
|
||||
do_constant_folding=True,
|
||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||
output_names=['estimator_out'],
|
||||
dynamic_axes={
|
||||
'x': {2: 'seq_len'},
|
||||
'mask': {2: 'seq_len'},
|
||||
'mu': {2: 'seq_len'},
|
||||
'cond': {2: 'seq_len'},
|
||||
'estimator_out': {2: 'seq_len'},
|
||||
}
|
||||
)
|
||||
|
||||
# 2. test computation consistency
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||
sess_options=option, providers=providers)
|
||||
|
||||
for _ in tqdm(range(10)):
|
||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
||||
ort_inputs = {
|
||||
'x': x.cpu().numpy(),
|
||||
'mask': mask.cpu().numpy(),
|
||||
'mu': mu.cpu().numpy(),
|
||||
't': t.cpu().numpy(),
|
||||
'spks': spks.cpu().numpy(),
|
||||
'cond': cond.cpu().numpy()
|
||||
}
|
||||
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
||||
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
||||
logging.info('successfully export estimator')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user