当前Convention未适配3.10([T]泛型注解导致的问题)
This commit is contained in:
58
cosyvoice/hifigan/f0_predictor.py
Normal file
58
cosyvoice/hifigan/f0_predictor.py
Normal file
@@ -0,0 +1,58 @@
|
||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
try:
|
||||
from torch.nn.utils.parametrizations import weight_norm
|
||||
except ImportError:
|
||||
from torch.nn.utils import weight_norm
|
||||
|
||||
|
||||
class ConvRNNF0Predictor(nn.Module):
|
||||
def __init__(self,
|
||||
num_class: int = 1,
|
||||
in_channels: int = 80,
|
||||
cond_channels: int = 512
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.num_class = num_class
|
||||
self.condnet = nn.Sequential(
|
||||
weight_norm(
|
||||
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1)
|
||||
),
|
||||
nn.ELU(),
|
||||
weight_norm(
|
||||
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
||||
),
|
||||
nn.ELU(),
|
||||
weight_norm(
|
||||
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
||||
),
|
||||
nn.ELU(),
|
||||
weight_norm(
|
||||
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
||||
),
|
||||
nn.ELU(),
|
||||
weight_norm(
|
||||
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1)
|
||||
),
|
||||
nn.ELU(),
|
||||
)
|
||||
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.condnet(x)
|
||||
x = x.transpose(1, 2)
|
||||
return torch.abs(self.classifier(x).squeeze(-1))
|
||||
Reference in New Issue
Block a user